ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

The Data Access Protocol — DAP 2.0

James Gallagher, Nathan Potter, Tom Sgouros, Steve Haalenn Flierl

Status of this Memo
This is a description of a Draft ESE Community Standard
Distribution of this Draft ESE Community Standard is unlied.

Change Explanation

004.0.06, 12 April 2005, Changed designation from ‘Progdosé to ‘Draft Community Standard;’ Added
a clarification of ‘stride’ in a hyperslab (Section 4.1.1pr@ected the grammar fékttributesto indicate that
they may have both scalar and vector values (Section 7.2dded a description of Conditional Requests
(Section 6.3); Added a description of the encoding of emggugnce responses (Paragraph 7.3.2.3); Added
addresses for all authors.

004.0.05, 17 Jan 2005, Added a note about the Expires headke tsection on HTTP/1.1 caching (Sec-
tion 7.1.4); Added note about XDR encoding of the Start otdnse and End of Sequence markers (Para-
graph 7.3.2.3).

004.0.04, 20 Dec. 2004, Corrected the descriptions ofAttiay, Grid and Sequencéypes so that all use
zero-based indexing and so that all explanatory and exatextiés consistent with row-major ordering of data
(Sections 3.3.3, 3.3.4, and 4.1.1); Corrected the degmmijtf the relational operators in the selection part
of the constraint expression (Table 5 on page 16); Addedrmdition on supporting HTTP/1.1 caching (Sec-
tion 7.1.4); Added information on the encoding of byte asréyaragraph 7.3.2.1)

004.0.03, 13 Sept. 2004, Editorial changes; Added a clatifin of the terms ‘persistent representation’ and
‘on-the-wire’ to “Data Representation” (Section 2.1); Axdidthis “Change Explanation” section for confor-
mance with ESE RFC 003 and made entries for the two previotsiors using information from CVS;
Adopted the new RFC version numbering system and set the @umhkhis document at 004.0.03.

004.0.02, 6 Aug. 2004, Editorial changes; Added Steve Heakd Glenn Fleirl as authors; Marked as ‘Pro-
posed Community Standard’ as per ESE RFC 003; Added “Matindbr Proposing Standardization” (Sec-
tion 1.1); Added note about Error objects in “Overall Opindit (Section 2).

004.0.01, 28 June 2004, Added Authors section; Added Esgattion.

Copyright(© NASA, 2004. All Rights Reserved.

Abstract

This document defines the OPeNDAP Data Access Protocol (DAEata transmission protocol designed
specifically for science data. The protocol relies on theelvidised and stable HTTP and MIME standards,
and provides data types to accommodate gridded datapredhtiata, and time series, as well as allowing users
to define their own data types.

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard
Contents
1 Introduction e 3
1.1 Motivation for Proposing Standardization 0oL 4
1.2 RequiremMents e e 4
2 OverallOperation e e e e 4
2.1 DataRepresentation e e 6
3 CharacterizationofaDataSource e 6
3.1 Variables 6
3.2 Atomicvariables e e 7
3.2.1 Integertypes 7
3.2.2 Floatingpointtypes e e e 7
3.2.3 StiNgtypes e e e e 8
3.2.4 A note regarding implementation of the atomic types..... 8
3.3 Constructorvariables e e 9
331 AIMAY . . o 9
3.3.2 Structure e e e e 9
3.3.3 Grid e 10
3.34 SeqUENCE. e e 10
3.4 Attributes L e 11
3.5 Attribute Structures L e e 12
3.6 Attribute organization e 12
4 Constraint EXpressions e e e 12
4.1 Limiting databytypeandbyvalue Lo 12
4.1.1 Projections e e e 13
4.1.2 Selections e 15
4.1.3 ServerFUNCLIONS e e 17
4.2 Data Type Transformation Through Constraints 17
5 Names e 18
5.1 Escaping charactersinnames i e e e 18
5.2 Constructorvariablenames e e 18
5.3 Fully Qualified Names 19
5.3.1 VariableNames e 19
5.3.2 Attribute Names e 19
6 Requests e e e 19
6.1 URLSYNtax e e e e 19
6.1.1 Constraint eXpressions e e e e e 20
6.2 RequestHeaders e 21
6.2.1 Accept-Encoding e e 22
6.2.2 HOSt. 22
6.2.3 User-Agent e e 22
6.3 Conditional Requests e e 22
7 RESPONSES e e 22

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard
7.1 ResponseHeaders e e 22
7.1.1 Content-Description e e 23
7.1.2 Content-Encoding e 23
7.1.3 Content-Type o e e e 23
7.1.4 SupportforHTTP/1.1caching 23
T.15 SEeIVEer . . . 24
7.1.6 WWW-Authentication e 24
7.1.7 XDODS-SEerver e e e 24
7.2 ResponseBodies e 24
T7.2.1 DAS . . 25
7.2.2 DDS .. e 27
7.23 DataDDS e 29
T.24 EITOr . . . e 30
7.25 Version e e 30
7.2.6 Help. e 31
7.3 EncodingValues e 31
7.3.1 AOMICLYPES e e e e 31
7.3.2 CoONnstructortypes o o e e 31
8 Examples e e 34
8.1 Simplerequest e 34
8.2 Grid . . . e 35
8.3 Sequence. e e 37
References 40
AUtNOIS e e 41
Appendices
A Notational Conventions and GenericGrammar o v i v i e 42
A.l Augmented BNF e 42
A2 BasicRules e 43
B Acronymsand Abbreviations 45
C Errata e e e e 46

1 Introduction

This specification defines the protocol referred to as tha Batess Protocol, version 2.0 (“DAP/2.0"). In this
document ‘DAP’ refers to DAP/2.0 unless otherwise noted.

The Data Access Protocol (DAP) is a protocol for access ta daganized as name-datatype-value tuples. It
is particularly suited to accesses by a client computer ta sfwred on remote (server) computers which are
networked to the client computer. The protocol has been bigehe Distributed Oceanographic Data System
since 1995[16] and subsequently by many other projects emgbg.

While the name-datatype-value model is a nearly univasateptuabrganization of data, the actual organi-

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

zation of data takes nearly as many forms as there are indiabllections because there are many different
file formats, APIs and file/directory organizations usedaase data. The DAP was designed to hide the im-
plementation of different collections of data using aniifaee based on the name-datatype-value conceptual
model.

1.1 Motivation for Proposing Standardization

The DAP and its associated software components (data seawdrclient libraries) form the foundation of the
National Virtual Ocean Data System (NVODS). NVODS was depetl as a system that facilitates access to
oceanographic data and data products via the Internetnredients (users) from considerations of: where
the data are stored; the format or data management strustder which they are stored; and (to a significant
degree) the size of the database. NVODS (formerly known es\Mintual Ocean Data Hub’ — VODHub)
was created under a 1999 Broad Agency Announcement (BAApGHY the National Ocean Partnership
Program. The concept of the VODHub is to be “a key element efftil community-based ‘system’ to
broaden and improve access to ocean data...” The resuli@$ is also planned for use in the Integrated
Ocean Observing System.

Although the DAP was originally developed by and for the awagaphic community it has been adopted by
a number of meteorological and climate groups as well anayt@slextensively used in all three communities
- climate, oceanography and meteorology. SEEDS standsializof the DAP will help to accelerate its adop-
tion within these three communities, both through an ineeda developers writing to the specification and
through an increase in those providing their data via théoga. This will be of direct benefit to each of the
communities individually, and more importantly it will prigle the data interoperability required by researchers
interested in interdisciplinary problems.

It is important to stress the discipline neutrality of the ®And the relationship between this and adoption of
the DAP in disciplines other than the Earth sciences. Hiestause the DAP is agnostic as relates to discipline,
it can be used across the very broad range of data types @prcediin oceanography - biological, chemical,
physical and geological. Oceanography may well be uniqubigregard, at least within the sub-disciplines
of Earth Science. But of particular interest here, is thatehis nothing that constrains the use of the DAP to
the Earth sciences. For example, groups in the solar phgsiosunity have adopted the DAP for their use
and proposals are under consideration in other areas of ghgsics. By standardizing the DAP for the Earth
sciences we hope that this will provide an impetus for otlsgiglines to adopt it as well.

1.2 Requirements

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY” and “OPTIONAL” in this documentare to be interpreted as described in
RFC 2119[4].

2 Overall Operation

The DAP is a stateless protocol that governs clients malkiqgests from servers, and servers issuing responses
to those requests. This section provides an overview ofdhaeasts and responsée (the messages) which
DAP-compliant software MUST support. These messages & tosrequest information about a server and
data made accessible by that server, as well as requestagalaes themselves.

The DAP 2.0 uses HyperText Transfer Protocol (HTTP) as asrari protocol.

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

The table below provides a description of the DAP messades pfecise details of the requests and responses
are described in Section 6 (page 19) and Section 7 (page 28grv&ér MUST be able to provide the responses
outlined in Table 1. A server MAY support additional requesgponse pairs.

Table 1: DAP Requests and Responses

Request Response

DDS DDS or Error

DAS DAS or Error

DataDDS DataDDS or Error

Server version Version information as text

Help Help text describing all request-response
pairs

The DAP uses three responses to represent a data source. f These responses, the Dataset Descriptor
Structure (DDS) and Dataset Attribute Structure (DAS) rabterize the variables, their datatypes, names and
atributes. The third response, the Data Dataset Descitocture (DataDDS), holds data values along with
name and datatype information.

The DAP returns error information using an Error response.request for any of the three basic responses
cannot be returned, an Error response is returned in ite plac

The three responses (DAS, DDS and DataDDS) are completdimfaihemselves so that, for example, the

data response can be used by a client without ever requestiveg of the two other responses. In many cases,
client programs will request the DAS and DDS before requgsthe DataDDS, but there is no requirement

they do so and no server SHALL require that behavior on thegiatients.

NOTE: The first implementation of the DAP was written@i+ and the three basic responses correspgnd
to objects in that implementation. For this reason thegsoreses are referred to as ‘objects’ in
some of the DAP documentation. In some cases it is easieinio dfithese responses as objec
and, in those cases, we will use that term in this paper, tee.S&ction 7 (page 22) for a
discussion of the object/response duality.

Operationally, a DAP client sends a request to a server USiRGP. The request consists of a HTTP GET
request method, a Uniform Resource Identifier (URI)[3] teatodes information specific to the DAP (see
Section 6.1 on page 19) and an HTTP protocol version numilemfed by a MIME-like message containing
various headers that further describe the request. InipeadAP clients typically use a third-party library
implementation of HTTP/1.1 so the GET request, URI and HTE€Rsion information are hidden from the
client; it sees only the DAP Uniform Resource Locator (URh)some of the request headers. The DAP server
responds with a status line that includes the HTTP protoeion and an error or success code, followed by
a MIME-like message containing information about the resgoand the response itself. The DAP response is
the payload of the MIME-like HTTP response.

In addition to these data objects, a DAP server MAY providditimhal “services” which clients may find
useful. For example, many DAP-compliant servers provideHaiML-formatted representations of a data
source’s structure and a way to get data represented in §8V/ASCII tables. These additional services are
not described in this document, but are instead to be destiibESE Technical Notes.

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

2.1 Data Representation

Data can be an elusive concept. Data may exist in some stévamgat on some disk somewhere, on paper
somewhere else, in active memory on some server, or traleshsitong some wire between two computers.
All these can still represent the same data. That is, thesa important distinction to be made between the
data and its representation. The data consist of numbesgaabentities that usually represent measurements
of something, somewhere. Data also consist of the reldtipadetween those numbers, as when one number
defines a time at which some quantity was measured.

The abstract, platonic existence of data is in contrasstodhcrete representation, which is how we manipulate
and store it. Data can be stored as BCD numbers in a file on aalisks twos-complement integers in the
memory of some computer, or as numbers printed on a page.n beatored in netCDF, HDF, JGOFS, a
relational database and any number of other digital stdi@ges.

The DAP specifies a particular representation of data, tosled in transmitting that data from one computer
to another. This representation of some data is sometinfiesed to as th@ersistent representatidrof that
data, to distinguish it from the representations used inesoomputer's memory. The DAP standard outlined
in this document has nothing at all to say about how data redtor represented on either the sending or the
receiving computer. The DAP transmission format is conghyehdependent of these details.

3 Characterization of a Data Source

The DAP characterizes a data source as a collection of Vasiakach variable consists of a name, a type, a
value, and a collection dittributes Attributes in turn, are themselves composed of a name, a type, ande valu
(Section 3.4 on page 11). The distinction between inforomaith a variable and in aAttributeis somewhat
arbitrary. However, the intention is thAttributeshold information that aids in the interpretation of datachel

in a variable? Variables, on the other hand, hold the primary content ofta saurce.

3.1 Variables

Each variable in a data source MUST have a name, a type and omere values. Using just this information
and armed with an understanding of the definition of the DAR dgpes, a program can read any or all of
the information from a data source. The names and types ofaasdarce’s variables constitute ggntactic
metadat@l4].

Each variable MAY have one or mo#ttributesassociated with it. For information aboAttributes see
Section 3.4 (page 11) .

The DAP variables come in several different types. Theresaveraltomictypes, the basic indivisible types
representing integers, floating point numbers and the &ike, fourconstructortypes (also calle@¢ontainer
types) which are flexible collections of other variables.n§touctor types may contain both atomic variable
types as well as other constructor types.

Iwe use the term ‘persistent representation’ instead ofetra ton-the-wire representation’ because this repreientaf values is
often produced by creating a document which is then tramsehiiut could, just as easily, be stored in a file system, dada,ket c., for
later retrieval and transformed back into the binary infation which resided in the computer's memory. In practibe,dn-the-wire and
persistent representations are one and the same, butdalbhiine persistent representation can be used for othpopas than network
transmission.

2Attributesappear in many data storage systems such as netCDF[19], [#TJfeéhd HDF5[18]. They also appear under the moniker
‘property’ in Common Lisp[20].

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

The DAP variables describe the data when it is being traresiirom the server to the client. It does not

necessarily describe format inside the server or cliene DAP defines, for each data type described in this
document, a persistent representation, which is the irdion actually communicated between DAP servers
and DAP clients. The persistent representation consistevofparts: the declaration of the type and the

encoding of its value(s). For a description of the persistepresentation see Section 7 (page 22) .

The next two sections describe the abstractions that ¢otesthe variable type menagerie: the range of values
and the kind of data each type can represent.

3.2 Atomic variables

As their name suggestatomicdata types are indivisible. Atomic variables are used toesiategers, real
numbers, strings and URLs. There are three families of attypies, with each family containing one or more
variation:

e Integer
e Floating-point types

e String types

3.2.1 Integer types

The integer types are summarized in Table 2. Each of the fgpessely based on the corresponding data type
in ANSI C [2]. However, the DAP, unlike ANSC, does specify the bit-size of each of the integer types. This
is done so that when values are transfered between machiewill be held in the same type of variable, at
least within the limits of the software that implements th&FD

Table 2: The DAP Integer Data types.

name description range

Byte 8-bit unsigned char ot® —1
Intl6 16-bit signed shortinteger 2¥ to2! — 1
Uintl6 16-bit unsigned shortinteger 0%2° — 1
Int32 32-bit signed integer 2310231 — 1
Uint32 32-bit unsigned integer o2 -1

3.2.2 Floating point types

The floating point data types are summarized in Table 3. Tldfltvating point data types use IEEE 754[11]
to represent values. The two types correspond to ABKSfloat anddouble data types.

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

Table 3: The DAP Floating Point Data types.

name description range
Float32 |EEE 32-bit floating +1.175494351 x 10738 to
point[11] +3.402823466 x 1038

Float64 |EEE 64-bit floating point 4-2.2250738585072014 x 103 to
+1.7976931348623157 x 10308

3.2.3 String types

The two string data types are summarized in Table 4. The §iratsimple string type corresponding to the
ANSI C notion of a string: a series of US-ASCII characters eachasgmted in a single byte.

Stringtype values are limited to 32767 bytes.

The DAP also providesdRL data type which is the same 8fringexcept that it MUST be limited to standard
(7-bit) US-ASCII characters, due to the limitations of thatsx of Internet URLs[3], and has the specific
meaning of a pointer to some WWW resource.

In DAP applicationdJRL is usually used to refer to another data source, in a manmeniszent of a pointer.

Stringsare individually sized. This means that in constructor digb@s containing multiple instances of some
String, such asSequenceandArrays successive instances of ti&tting MAY be of different sizes.

See Section 7.3.1 (page 31) for other details of the pensisgpresentation dbtrings

Table 4: The DARStringdata types.

name description

String a series of US-ASCII characters.

URL a series of US-ASCII characters with the restrictions
specified in IETF RFC 2396[3]

3.2.4 A note regarding implementation of the atomic types

When implementing the DAP, itis important to match inforioatin a data source or read from a DAP response
to thelocal data type which best fits those data. In some cases an exatt may not be possible. For example
Java lacks unsigned integer types[13]. Implementatiocesdfavith such limitations MUST ensure that clients
will be able to retrieve the full range of values from the dedarce. As a practical consideration, this may be
implemented by hiding the variable in question or returranggrror.

If a variable is automatically hiddemn¢. the server analyzes the data source and determines thaicujasar
variable cannot be represented correctly and automatioathoves it from those variables made accessible
using the DAP) this MUST be noted by adding a gloBétibute to the data source indicating this has taken
place. The note MUST include the name of the variable(s) haddason(s) for their exclusion. If a variable
is removed by a human, thisttribute is OPTIONAL. For example, suppose a person serves data asdaus
server which provides a way to choose to serve only subséeadata source’s variables. In that case there’s
no need for the server to include a global attribute indigathat has taken place.

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

3.3 Constructor variables

Theconstructortypes provide a way to build new data types by composingiagisypes. A constructor type
MAY contain both atomic and constructor types. In princjpleere are no restrictions on the number of levels
or types of nesting of the constructor types. HoweverGhid type imposes some limits on the types it may
contain (Section 3.3.3 on page 10).

There are four constructor data types:

e Array
e Structure
e Grid

e Sequence

3.3.1 Array

An Array is a one-dimensional indexed data structure similar todieéihed by ANSIC. An Array’'s member
variable MAY be of any DAP data typéirray indexes MUST start at zero.

MultidimensionalArraysare defined agrraysof Arrays Multi-dimensionalArrays MUST be stored imow-
major order (as is the case with AN%I). The size of eaclrray's dimensions MUST be given. The total
number of elements in aAirray MUST NOT exceed®?3! — 1 (2147483647). There is no prescribed limit on
the number of dimensions &rray may have except that the foregoing limit on the total numbbelements
MUST NOT be exceeded.

Each dimension of aArray MAY also be named.
The number of elements in drray is fixed as that given by the size(s) of its dimension(s).

If you need a data structure which has varying row lengthsnondeterminate number of rows, consider a
Sequencef Sequencesr a Sequencef Arrays A Sequencef Sequencesan represent data with varying
row lengths, and while &equencef Arrays MUST haveArrays of the same length in each instance of the
Sequencehe total length of th&equences indeterminate. See Section 3.3.4 (page 10) .

3.3.2 Structure

A Structuregroups variables so that the collection can be manipulaedsingle item. Th&tructurés mem-
ber variables MAY be of any type, including other construdymes. The order of items in th@&tructureis
significant only in relation to the persistent represeatatf thatStructure

There is a special case of tBéructuredata type, calle®ataset This is the container that encompasses all the
variables provided in some data source.

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard
3.3.3 Grid

A Grid is a special case of@tructure used to supply information to aid in the interpretatiomofays A Grid
sets up an association between a tafgety and a collection of map vectors.

A Grid is an association of alV dimensionalArray with N vectors (nap vectory each of which MUST have
the same number of elements and the same name as the codiegpdimension of thérray. Each vector is
used to map indexes of one of tAeray’s dimensions to a set of values which are normally non-ietég.g.
floating point values).

Schematically, a two-dimension@rid is the following:

[20 o1 @2 - n |
Yo 200 201 202 " Rom
Y1 210 Z11 212 "t Zln
Y2 220 %21 222ttt Z2n
Ym Zm0 Zm1 Zm2 Tt Zmn

Each column of the: Array corresponds to an entry in themap vector, and each row efcorresponds to
somey value. So, for example, the data valueatss corresponds to the valugs, andzss.

For example, a geo-referenc&did might have map vectors that represent the longitude artddatiof each
row, so that if you know that the twelfth value of the longi¢uakray is -54, you know that all the values in the
twelfth column correspond to longitude 54 degrees west.

The maps MUST be vectors of atomic types.

3.3.4 Sequence
A Sequencean best be described as an ordered collection of zero or 8tanetures Each instance in the
series consists of the same set of variables, but contdfesatit values.

The semantics of thBequencelata type are very close to those of a table in a relationalbdae. You can
think of the instances in 8equencas rows in a traditional relational table. OPeNDAP servieas $erve data
from a DBMS like Oracle or mySQL usgequence® reflect the structure of their data.

A Sequencé can be represented as:

S00 So1 " Som
S10 S11 ** Sin
S0 Si1 Sin

3This restriction has been put in place to keep writing gdradients tractable. If the set of data types i&d’s mapArraysis allowed
to be aSequencefor example, any general client would have to be capableaifgssing that data type in a response. Such a client would
be very hard to build.

10

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

Where eachy - - - s,, entry represents a set of DAP variables, and the collecfiench entries constitutes the
SequenceEvery entry ofSequences MUST have the same number, order, and type of variablesyglfs

a Float64, then all thes;;, values MUST also b&loat64 variables. Similarly, in &sequencevhich contains
anArray or Structure each instance of tharray or StructureMUST be the same size. HoweverSaquence
MAY contain aSequencand each instance of the interi®equenc®AY have a different number of entries.

Unlike anArray, a Sequencias no explicit size.

Though the semantics &equencepglaces limitations on the kinds of requests a client may nudlkeserver,
once theSequencéas been retrieved, a client program may reference it in ey desired. The DAP de-
fines the persistent representation of data types, and timation between client and server (which includes
what kinds of requests can be made for what kind of variaplas) the DAP does not specify the internal
implementation of the data types for any client or server.

3.4 Attributes

Attributesare used to associate semantic metadata with the variabéedata source. Attributes are similar
to variables in their range of types and values, except thidt &re somewhat limited when compared to those
for variables. Attributes are encoded using the DAS respaanrsd the relationship of that to the DDS response
places some extra restrictions on attributes (See Sectioh @n page 25).

Each variable in a data source MAY haitributesassociated with it (calledariable attribute¥ and the entire
Dataset(see Section 3.3.2 on page 9) MAY itself hatributes calledglobal Attributes .

While the DAP does not require any particukttributes some may be required by varionetadata conven-
tions Thesemantic metadat@r a data source comprises tAtributesassociated with that data source and its
variables[14]. ThusAttributesprovide a mechanism by which semantic metadata may be myssswithout
prescribing that a data source use a particular semantadaiet convention or standard.

The data model foAttributesis somewhat simpler than that for variables. Atributes type MUST either be
a Structureor one of the atomic types listed below. If the type of fi&ibuteis one of the atomic types, the
value MAY be either scalar or one-dimensioAatay. AttributesMAY NOT be multi-dimensional arrays.

If an attribute in a particular data souraead. an HDF5 file) is a multi-dimensioArray, it is suggested that
theAttributebe promoted to a variable and that a n&tiributebe created for that variable which describes the
promotion. This fits the paradigm of remote access betteesime multi-dimensional array information would
then be accessed with a constraint expression. Since aorigrpressions can only be applied to variables, it
makes sense to promote such data to a variable.

An Attributes value MAY be any of the following atomic types:

e Byte

e Intl6

e UIntl6
e Int32

e UInt32
e Float32

e Float64

11

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard
e String
e URL

The range of values for atomic typdtributesis the same as for the atomic variable types. See Sectioh 7.2.
(page 25) for information on the persistent representatf@omic-typeAttributes

3.5 Attribute Structures

An Attribute structure is a container which MAY be empty or which MAY cantatomic typeAttributes
and/orAttribute structures. Semantically, akttribute structure is equivalent to th&tructurevariable type;
it provides a way to form logical groupings and hierarchieg\tiributes An Attribute structure MAY NOT
directly contain values, only othéttributesandAttribute Structures

3.6 Attribute organization

Each variable MUST have an associatgttribute Structureand the hierarchy formed by these containers
MUST mirror the hierarchy of variables in the data sourceerghis no requirement that@atasethave an
Attribute Structurdf it has no globalAttributes This is one way in which th®ataset which is similar to
Structuretype variable, is treated specially. All oth®tructurevariables are REQUIRED to have an associated
Attribute Structurgas are ALL variables) but thBatasethas no such requirement.

4 Constraint Expressions

A constraint expressioprovides a way for DAP client programs to request certairabées, or parts of certain
variables, from a data source. Many data sources are ladg@any variables from those sources are also large.
Often clients are interested in only a small number of vafteas the entire data source. Constraint expressions
provide a way for clients to tell a server which variablesj @ammany cases, which parts of those variables,
they would like.

This section presents the subsampling abilities that MU8Tpitmvided by a DAP server, without binding
these capabilities to any particular syntax; see Sectibrl §page 20) for the representation of a constraint
expression. Some implementations MAY choose to implemeéditianal syntaxes but MUST implement the
syntax described there.

An empty constraint expression implies that the entire datace is to be accessed.

4.1 Limiting data by type and by value

A constraint expression provides two different methodscieas the information held by a data source. The
constraint expression can be used to limit data using theea@md/or dimensions of variables or by scanning
variables and returning only those values that satisfyagerelational expressions. The former are referred to
asprojectionswhile the latter are calleselections

A constraint expression MAY combine both projection andestibn constraints. For example, a projection
might specify that temperatures held ilsaquencare to be returned, and a selection would specify that only

12

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

Sequencentries with dates later than 1999 are to be examined. Thet resurned from a request like this
would be aSequencef temperature measurements taken after 1999.

Section 4.1.1 (page 13) describes the projection opematidrich any DAP implementation MUST support
and, likewise, Section 4.1.2 (page 15) describes the redjgiglection operations.

To provide implementors with a means to extend the consteadpression mechanism, it is possible to add
functions to a server and to call those as part of the constexipression. Functions are described in Sec-
tion 4.1.3 (page 17) .

4.1.1 Projections

The projection clausef a constraint expression provides a way to choose partslafeaset based on the data
types of the variables in Bataset There are two types of projection operations. First, itdsgible to choose
individual fields of the constructor data types. This isedfleld projectionand applies to th&tructure Grid
andSequencdata types in the following ways:

Structure A field projection which chooses one or more fields fro®teucturevariable causes a DAP server
to return only those named fields from tB&ucture Note that théDatasetitself is similar to aStructure
It differs in that it MAY have an attribute container (whil# ather variables MUST) and it MUST NOT
be included in forming fully qualified names (See Section Page 18).

Grid A field projection which chooses one or more fields fro@rd variable causes a DAP server to return
only those named fields from th@rid. It is likely that the variable returned will no longer mebet
criteria for a correctly formerid data type, so the variable may be returned S#ractureinstead (see
Section 4.2 on page 17).

Sequence A field projection which chooses one or more fields fro@exjuenceariable causes a DAP server
to return only those named fields from tBequenceFor theSequenceype, this means returning thé
instances but limiting the fields those given in the field patipn. For example, suppose tBequenceg

hasP fields:
50,0 50,1 e S0,P—1
81,0 5171 Sl,P*l
SN-1,0 SN-11 --- SN-1,P-1

If a field projection is used to choose only the second fielel résult of accessing would be:

50,1
81,1

SN—1,1

When a projection in a constraint expression contains timeenaf a constructor-type variable, the response
MUST include all of the members of that variable. If a projectincludes the name of a variable that is not
fully qualified (See Section 5 on page 18) the response SHOldEIDde that variable as if the fully qualified
name was given. This provides a shorthand notation for mesydfe constructor. Suppose there {Staucture
namesfoo with a member nameblar. Includingbar in a constraint expression would cause fie . bar to

13

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

be included in the response. If a name appears in more thaplaoe in aDataset(for example, suppose a
Grid is namedST and has a membeéirray also namedST) the constraint expression evaluator MUST treat
the name as fully qualified and include either the matchingabée in the response or return an Error response
if no variable matches.

When using a field projection, it is possible to request althef members of a constructor-type variable by
using just the name of the constructor.

The second type of projection isteyperslab A hyperslab is used to limit returned data to those elements
that fall within a range of index values, and MAY also spedHgt the range be subsampled usingtride

By including a hyperslab projection for one or more dimensiof a variable it is implied that any unnamed
dimensions are to be returned in their entirety. A hypersapplied to theArray, Grid andSequenceypes in

the following way:

Array Array dimensions are number@d. .., N — 1 for anArray of rank N. Within each dimension of size
M, elements are numberéd. .., M — 1. A hyperslab projection for dimension 0 < n < N MUST
include either the starting index, and ending index,,, such that,,, <4, V{0 <, < M} orinclude
ONLY a starting index. In the later case the hyperslab catisesingle element corresponding to the
index to be projectefi.Note that the starting index is zero-based, so the first eleisaeturned using
the hyperslalf0] and theN'" element is returned using the hypersjab— 1].

The stride value gives the distance between adjacent etsritethe source data. If not given, stride
defaults to one (1) which causes all elements to be retuthddr example, a stride of two (2) is given,
then every other element would be returned. Sampling statte starting index and procedes until the
index of the current element is less than or equal to the griddex. Thus a hyper slab such[@s 2 : 5]
would contain element$ 2, 4 from the source data. If a stride is included in the hyperatabis greater
thani,, — i, + 1 then the hyperslab is equivalent to one whigre= i,,, and the original value of,,

is discarded.

The number of elements returned as a result of a hyper slakeis gy the relation (i,,, —i,,)/stride] +
1.

Grid Grid dimensions are numbered as Areay dimensionsGrid dimensions MAY have hyperslab projec-
tions applied to them in a manner similarAorays except that a hyperslab applied t&ad is applied
to not only the target array, but also all the correspondiag arrays. For example, given t&eid:

1 2 3 4 26
5 6 7 25
target = 9 10 11 12 | ™Mapi= [—-53 —-52 =51 50] ymap2 = | o4
13 14 15 16 23

A hyperslab projection which chose row indexes 1 and 2 andneolindexes 1 and 2 would cause a
server to return:

6 7 25
target—[lo 11},map1—[—52 —51},map2—[24}

for the Grid.

Note that a field and hyperslab projection can be combined €rid to choose only part of one of the
fields, say just part of the targétrray. In this case, the hyperslab applied to one field of @& is

4The use of the phrasgtarting indexs misleading. We use the term to remain consistent withraldeumentation.
5A stride value is only meaningful when a projection contansinge of values indicated by both a start and end valueessinot
meaning full when the projection consists of a start valug.on

14

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

equivalent to a hyperslab applied to Array. The field projection yields aArray and the hyperslab is
then applied to thaArray.

Sequence A hyperslab can be applied toSequence A Sequencsvith M instances can have a hyperslab
projection applied to it as if it is aArray of rank 1. Since th&equenceype does not contain an explicit
dimension size, the siz&/ is not known until the entir§equencés accessefl.A hyperslab projection
can be used to ask for the first elements, the next: elements, et c., which may be very useful for
clients which need to know the sizes of varaibles beforessing them. A hyperslab projection for a
Sequencéi,, i.) will return m instances of th&equencsuch thatn = |i., M — 1] —i; + 1 depending
on whetheri, is an index greater than the number of instances irSéguenceSequencestances are
indexed starting with zero.

It is possible to ask for values from several variables innglsi constraint expression by including several
projections in the constraint expression. Also note tharapty constraint expression, by convention, projects
all of every variable in a data source.

4.1.2 Selections

A selectionprovides a way to limit data accessed based on the value(lspsé data. In many ways selections
are similar to WHERE claues in SQL[15]. A selection is cormgabsef one or more relational sub-expressions.
Each sub-expression MUST be bound to a variable listed imggion clause. When several sub-expressions
constitute a selection, the boolean value of the selectitimei logicallND of each of the boolean values of each
sub-expression. Note that there is no way to perform a lbgiaperation on the sub-expressions but there is
a way, within a sub-expression, to test several values @ndrerue if any satisfy the relation.

Each of the relational sub-expressions.(relations) is composed of two operands and a relationalabper
Each operand MUST be an atomic data type; it MAY be a fully dieal name from the data source or a
constant. Note that it is possible to have a relational sydession consist of two fully qualified names from
the data source or a single fully qualified name and eithemglesconstant or a set of constants. In some cases
there are further limitations on the allowed types basederr¢lational operator. Table 5 lists the operators,
their meaning and the data types on which they may be applied.

Operands in a constraint expression selection MAY be eithgables in the data source or constants. When
constants are used in a selection sub-expression they MA¥ither single or multi-valued. If a constant
operand has more than one value, each value is used in siocces®n evaluating the relation. For example,
suppose there is a relation:

site = {"Diamond_St", "Blacktail_Loop"}
Then that relation is true for any instance wheiee is eitherDiamond St ORBlacktail Loop.
When a variable appears in a selection sub-expression itMéSsingle valued.

Selections MAY ONLY be applied to th8equencédata type in the following way:

Sequence Logically, the relations in a selection bound t®Gaquencare evaluated once for every instance
(i.e. row) of theSequencehe result of applying the selection to tBequences aSequencehere all of
the instances satisfy all of the relations.

8For manySequenceariables, it may never be the case that the e®igéquencis accessed since it may contain millons of instances.

15

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

Table 5: DAP Selection Relational Operators

Operator Meaning Types

< Less than Byte, Intl16, Int32, UInt1l6, UInt32,
Float32, Float64

<= Less than or equal to Byte, Intl16, Int32, UIntl16, UInt32,
Float32, Float64

> Greater than Byte, Int16, Int32, UInt16, UInt32,
Float32, Float64

>= Greater than or equal to Byte, Int16, Int32, UIntl6, UInt32,
Float32, Float64

= Equal Byte, Intl16, Int32, UInt16, UInt32,
Float32, Float64, String, Url

1= Not equal Byte, Intl16, Int32, UIntl16, UInt32,

Float32, Float64, String, Url
=" Regular expression match String, Url

A Sequencé with three fields and four instances (an example of a twoli8eguencean be found on
Section 8.3) such as:

index temperature site
10 15.2 Diamond_St
11 13.1 Blacktail _Loop
12 13.3 Platinum_St
13 12.1 Kodiak_Trail

A selection such asndex>= 11 would choose the last three instances:

index temperature site
11 13.1 Blacktail _Loop
12 13.3 Platinum_St
13 12.1 Kodiak_Trail
The selectiorsite=" ".*_St" would choose two instances:
index temperature site
10 15.2 Diamond_St
12 13.3 Platinum_St
And a selection with the two sub-expressidngiex<=11, site~".*_St" would return only one in-
stance:
index temperature site
10 15.2 Diamond_St

Finally, a selection can relate two variabléadex>temperature would return:

index temperature site
13 12.1 Kodiak_Trail

16

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

4.1.3 Server Functions

A constraint expression MAY also use functions executedbyserver. These can appear in a selection orin a
projection, although there are restrictions about the tygas functions can return.

A function which appears in the projection clause MAY retany of the DAP data types. In this case the return
value of the function is treated as if it is a variable preseiie top level of theDataset(see Section 3.3.2 on

page 9).

A function which appears in the selection clause MAY retumpatomic type if it is used in one of the relational
sub-expressions. If a function in the selection clause ésl @s the entire sub-expression, it MUST return an
integer value. If that value is zero, the function will evatiel as boolean false, otherwise it will evaluate as
boolen true.

When functions encounter an error, a DAP server MUST sidratl¢ondition by returning an error response.
A server MAY NOT return a partial response; any error encergd while evaluating the constraint expression
MUST result in a response that contains an unambiguousmessage.

4.2 Data Type Transformation Through Constraints

When a constraint expression has a projection clause tbatifigs a piece of a constructor variable, such as
one field of aStructureor just the array part of &rid, thelexical scopingof the variable is not abandoned.
This is important for avoiding name collisions. For examjdfl@a single item is requestd from$tructure the
response MUST contain$tructurewith only that item.

Here is the behavior for each data type:

Array An Array MUST be returned as afirray of the same rank as the sourseay (same number of di-
mensions). A hyperslab request that effectively elimisateimension by reducing its sizelt@oesnot
reduce the rank of the returnédray. For example, suppose a 10 by 10 elemfmay was subsampled
to a 1 by 2Array. The returned variable would still be described as a two dsimnalArray.

Structure A StructureMUST be returned as &tructure If the projection clause of a constraint expression
selects only one member of tB#¢ructure then a one-memb@&tructureMUST be returned. If more than
one member of th&tructureare named in the projection clause, they MUST be returneérsame
Structure

Grid A Grid modified with a hyperslab operator MUST return anotGed, following the same rules as an
Array. But if the projection clause specifies the elements ofGhie independently of one another—
the target array, or one of the maps—theBtauctureis returned containing only the specified vari-
ables. A two-dimensionabrid namedCloud will return a Grid in response to a request like this:
Cloud[1:10] [20:30]. But a request for the target array alonéteud.Cloud[1:10] [20:30]—re-
turns aStructurecalledCloud containing arArray calledCloud. In this example, the map arrays are not
returned.

Sequence A Sequenc®IUST be returned as Sequenceeven if a selection clause selects only a single entry
or no entry at all. If a projection clause identifies more tbae member of th&equencghey MUST
be returned in the san&equence

17

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard
5 Names

This section describes the persistent representatiomoésa

A DAP variable’s name MUST contain ONLY US-ASCII charactesith the following additional limitation:
The characters MUST be either upper or lower case lettersbets or fromtheset_ ! ~ x > - " . Any
other characters MUST be escaped.

5.1 Escaping characters in names

To escape a character in a name, the character is replackd bgquenc§<Character Code> whereChar-
acter Codas the two hex digit code corresponding to the US-ASCII chima Note that the charactefsand)

(left and right parenthesis) must be escaped because tteasead in the constraint expression syntax and not
escaping them makes it impossible to parse certain constrgpressions. Similarly, the (period) character
MUST be escaped when it appears as part of the name of a \ababause it is used as the separator between
names in a fully qualified name. Thus, not escaping the pesiodld make it impossible to parse certain
constraint expressions.

5.2 Constructor variable names

The members of a constructor variable can be individualtressed in the following fashion:

Array Individual Array items MUST be addressed with a subscripted expression.r=8ray namedlemp,
the fourteenth member of th&rray is referenced aSemp[13] (all indexes start at zero). A two-
dimensionaArray is addressed with two subscripts, contained in separat&éi@aSurfaceTemp [13] [3].
See Section 6.1.1 (page 20) .

Structure Members of &Structureare addressed by appending the member name t8ttheturename, sep-
arated by a dot.(. If the StructurePosition has a member namétkight, then it is addressed as
Position.Height. The members of &tructureMUST have different names from one another.

Grid The arrays in &rid MAY be referenced in the same fashion as the membersStficture For a
two-dimensionalGrid namedCloud, with one-dimensional map vectokatitude andLongitude, a
member of a map vector is addressed like thissud . Latitude [36]. This refers to a single value from
theLatitude array. Itis also possible to request part of the target agayud . Cloud [36] [42], which
will return a single data measurement. Tied itself MAY be addressed like afsrray: Cloud [36] [42],
which will return aGrid containing the valu€loud.Cloud[36] [42] along with the two map vectors
(Cloud.Latitude[36] andCloud.Longitude [42]). See Section 4.2 (page 17) for an explanation of
how data types are transformed by constraints.

Sequence A Sequencenember is addressed in the same fashion &racture That is, a time called
Releasedate Of a SequencaamedBalloons is addressed @alloons.Releasedate. But note that
unlike aStructure this name references as many different values as therentitesein theBalloons
SequenceéA single entry or range of entries inSequenc®AY be addressed with a hyperslab operator
like the items in arArray. The variables in &equenc®UST have different names from one another.

18

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

5.3 Fully Qualified Names

The lexical scoping rules of the DAP require some desciiptibhe important concept is tHally qualified
name which is an unambiguous name for some variable or attribute

5.3.1 Variable Names

The fully qualified name of a variable is composed of the agdearollection of variable names, starting at the
Datasetlevel but not including théatasetname, that can be followed to the terminal variable name. The
names MUST be separated by the dot (.) character. Thufatasethamedtest contains a structure named
sst which contains a variable namédo, the fully qualified name would best . foo.

5.3.2 Attribute Names

The fully qualified name of aAttributeis composed of the ordered collection/ttribute names, starting at
theDatasetlevel but not including th®atasethame, that can be followed to the terminal souktieibute. The
names MUST be separated by the dot (.) character. Thufatasethamedtest contains a structure named
sst which contains a variable namédo, the fully qualified name of thAttributesof foo would besst . foo.

If foo possessed akttributenamedtruit then the fully qualified name fdrruit would besst . foo.fruit.

NOTE: Forming the fully qualified name for afttributeis largely a formality in DAP/2.0 since it is onl
possible to request all of thttributes However, the requirements are included here as a guigle.
Future versions of the DAP may require its implementation.

6 Requests

The DAP is a client-server protocol: the client makes a retjoithe server, and the server responds with some
information. The request and response travel via HTTP. 3&ision describes the form of requests to servers.

6.1 URL Syntax

A DAP URL is essentially an HTTP URL[6] with additional reistions placed on thebs-path component.

DAP-URL = "http://" host [":" port] [abs-path]

abs-path = server-path data-source-id ["." ext ["?" query]]
server-path = ["/" token]

data-source-id = ["/" token]

ext = "das" | "dds" | "dods"

One possible implementation can divide these as followédd: server-path is the pathname to the server,
whereasiata-source-id is the pathname to the data. In reality the disticntion betwihe two components
is arbitrary.

The DAP uses HTTP as its session protocol[21], so every DAR &iRrts with the schemigttp:. Thehost
and optionabort name a host and TCP port of an HTTP server that will handledhsian. Théwost may
also contain authentication information as described i€ RB17[8].

19

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

Theabs-path portion of theDAP-URL is composed of four parts:

server-path A pathname which identifies the DAP server to handle the retquEhe servers may be imple-
mented as Common Gateway Interface (CGI) programs or thgyusmanother equivalent scheneey.
the Apache HTTP daemon’s module system).

data-source-id A string passed to the server namedsey ver-paththat uniquely identifies the source of data
onhost. Thedata-source-id may take the form of a pathname within the HTTP server’s damtm
root directory, or it may name the data source in some othgr(e/g.the DAP server might maintain a
table of names mapped to tables in a relational database).

Two specialdata-source-ids MUST be recognized by a DAP server. They aegsion andhelp.
When a DAP server receives theta-source-id version it MUST respond with version information
(see Section 7.2.5 on page 30). When a DAP server receivedatte-source-id help it MUST
respond with a help message (see Section 7.2.6 on page 31).

ext The optionalext part of theabs-path tells the DAP server which type of response to return. Each
response has a string that is used by the requester. SeerSeédgpage 22) for a description of the
responses and thext strings used to request them.

query The optionakuery part of theabs-path is used with data requests to limit those requests to specific
variables or values within the data source. See Sectiofh page 20) . Theguery part MUST ONLY
be used with theds anddods ext.

6.1.1 Constraint expressions

A Constraint Expression (CE) provides a way for clients fguesst certain variables, or parts of certain vari-
ables, from a data source. This section describes the systakto encode a constraint expression so that it
can be sent, as part of a request, to a server. See Sectiogel I@nfor a general discussion of constraint
expressions and the rules for their evaluation.

Some implementations of the DAP MAY choose to provide al&rrconstraint expression syntax, but all
implementations MUST provide the one described here.

Constraint expressions have the following syntax:

CE = [projection] *("\&" selection)

projection = variable | variable "," projection

variable = id | function

function = id "(" args ")"

args = arg | arg "," args

arg = id | quoted-string | integer | float | URL
id = 1x<any CHAR except CTLs or SP> [array-dim]

The constraint expression MUST be encoded using US-AS@haatters. It MAY be used when requesting the
DDS or DataDDSi(e. when using thelds or dods extensions, see Section 7.2.3 on page 29). It MAY NOT be
used with the DAS, Version or Help Requests. When it is inetlith a request, it MUST appear in the request
URL as described in Section 6.1 (page 19) . Note that a canségpression is optional for both the DDS and
DataDDS requests; if absent the request is for the entireentsof the data source.

"Theext is optional because it is possible to request either théares help response using a speciata-source-id of version
or help, respectively. See Section 7.2.5 (page 30) and Sectio6 (page 31) .

20

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

A constraint expression has two parts, the projection aadséection. A projection lists the variables to be
returned by the DAP server. If more than one variable is todierned, then the projection is a comma-
separated list of variables. Leaving the projection parthef CE empty is shorthand for requesting all the
variables in the data source. A selection is used to reghasvariables, or instance of variables in the case of
a Sequenceare returned only if they match certain values. Either dhlitbe projection and selection part of
the constraint expression MAY be null.

6.1.1.1 Identifier names The encoding rules for identifier names are given in Secti(page 18) . A valid
identifier name MUST appear fad in the above grammar. To refer to one field of a constructoe tgptid

to the name of the constructor, followed by a perioyl &nd the field name. To request all of the fields in a
constructor, setd to the name of the constructor. Theé value is case-sensitive: the stringmp is different
than the strin@emp.

6.1.1.2 Hyperslab operators An Array MAY be accessed using only its name to return the entire aray
using a hyperslab[() operator to return a rectangular section of the array. éndker case, the hyperslab is
defined for each dimension by a starting index, an endingirated an optional stride value. Akrray or Grid
variable MUST either be unconstrained or have a hyperslabtraint for each of its dimensions. Note that it is
possible to combine the syntax that requests a field of aearst with theArray hyperslab syntax to request
a section of one of thArray variables held in &rid.

array-dim = [start ":" stride ":" stop]
[start ":" stop]
[start]

start, stride, stop = 1*DIGIT

The omittedstride value indicates a default of one. If theop is also omitted, its default value is the same
as thestart value. All of these must be integers greater than or equatto. z

6.1.1.3 Calling server-side functions Functions MAY be called as part of either the projection deston
clauses. In the case of a selection, the function MUST reauralue which can be used when evaluating the
clause. In the case of a projection, the function MUST retiDAP variable which will then be the return
value of the request or it MUST return nothing in which case iun for side effect only.

selection = *relation | *function
relation (id rel-op id) | (value rel-op id)
| (id rel-op value)
value = constant | ("{" 1l#constant "}")
constant quoted-string | <int> | <float> | URL

6.1.1.4 Syntax errors Syntax errors in the constraint expression MUST cause aor Eesponse to be
returned. The Error response SHOULD contain text that deserthe error. The description SHOULD be
human readable.

6.2 Request Headers

The headers described in Sections 6.2.1 to 6.2.3 MUST bdéthad described. Other headers which are part
of HTTP 1.1 MAY be included in the request and MAY be honorectdyAP server.

21

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

6.2.1 Accept-Encoding

TheAccept-Encodingrequest-header is used by a DAP client to tell a server thahibiccept compressed re-
sponses. See RFC 2616[6] for this header’s grammar. Vatuestodings aréeflate, gzip andcompress.
This header is OPTIONAL. When a client includes this heatisréffectively asking the DAP server to encode
the response using the given scheme. The server is undedigatain to use the requested encoding. Note
that as per Section Section 7.1.2 (page 23) , a server MUSThesentent-Encoding header to indicate that
a content encoding has been applied. A server MUST NOT use@udang when a client has not requested it.

6.2.2 Host

TheHost request-header is used by a DAP client to provide its IP a$doe DNS name to the DAP server.
See RFC 2616[6] for this header’s grammar. This header MUsSiRduded with every request.

6.2.3 User-Agent

The User-Agent request-header is used by a DAP client to provide specifigrinétion about the client
software to the DAP server. See RFC 2616][6] for this headgdmmar. This header is RECOMMENDED.
DAP servers MAY log this information.

6.3 Conditional Requests
The DAP supports HTTP/1.1 conditional requests made ukiegft-Modified-Since header. DAP servers
SHOULD honor this header and return an HTTP/1.1 result c6884 (Not Modified) if appropriate.

While HTTP/1.1 supports both date-based (using.tiet -Modified header) and entity-based (using ETag
header) conditional requests, the DAP only supports the-dased ones. For many data sources, computing
the values foETag headers would be onerous.

See RFC 2616[6] for the description of conditional GET resgsie

7 Responses

A valid DAP response has the same form as a valid HTTP respdheefirst line contains the HTTP protocol
version, a status code and reason phrase[6]. Followingatieithe response headers which vary depending
on the request and payload of the response (see Sectionagé §2) for a description of the headers). As
described in RFC 822[5], the HTTP response status line aaddrs are separated from the response’s payload
by an extra set of CRLcharacters which make a blank line.

The six possible response payloads defined by the DAP areiloledn detail in Section 7.2 (page 24) .

7.1 Response Headers

The DAP responses use several of the standard MIME headexddlition to some DAP-specific headers.

8The token ‘CRLF’ is used to denote the carriage return arefdied characters which correspond to decimal value 10 acichde
vale 13.

22

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

7.1.1 Content-Description

The Content-Description header is used to tell clients which of the different basgpomses is being
returned or if an error message is being returned. For anyeobasic responses (DDS, DAS, or DataDDS) or
the error response, this header MUST be included. This méAd&T NOT be included in Version or Help
responses. See IETF RFC 2045[9] for information about théler.

Content-Description = "Content-Description :" tag
tag = "dods-dds" | "dods-das" | "dods-data" | "dods-error"
Example: Content-Description: dods-error

7.1.2 Content-Encoding

If a DAP server applies an encoding to an entity, it MUST inleutheContent-Encoding header in the
response. See RFC 2616][6] for this header’'s grammatr.

Example: Content-Encoding: deflate

7.1.3 Content-Type

The Content-Type header MUST be included in any response from a DAP serveid ahtent types for
DAP responses areext/plain, text/html andapplication/octet.’® See RFC 2616[6] for this header’s
grammar.

Example: Content-Type: application/octet

7.1.4 Support for HTTP/1.1 caching

In order to support HTTP/1.1 caching, either in the clientroa separate client-side cache sub-system, the
DAP must includ two headers in each resporseie andLast-Modified. Other headers such Bgpires,
Cache-Control andVary are useful but not essential.

While not required by the DAP, thexpires header is none-the-less important. Because programs may do
load the structure (DDS), attributes (DAS) and data (Dat8PBs separate requests and at separate times,
a cache may pick significantly different expiration timestlie absence of an explicit Expires header. Data
sources that are frequently updated will have DAP comporesniests that cache and expire together if the
Expires header is explicitly (and correctly) 4&t.

See the HTTP/1.1 RFC 2616[6] for more information about HEBRpport for caching.

7.1.4.1 Date TheDate header provides a time stamp for the response. This headeeded for servers
that support caching. See RFC 2616][6] for this header's gramServers MUST provide this header.

Example: Date: Fri, 09 Feb 2001 18:54:55 GMT

%It would be better to use a multipart document in place ofyl ication/octet.
10Thanks to Benno Blumenthal for pointing this out and for jaing this text, which was changed slightly, hopefuly withantroducing
any error.

23

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

7.1.4.2 Last-Modified TheLast-Modified header provides the time that the response last changesl. Thi
should be the most recent of the last time the data set chamgkthe last time the server changed.

Example: Last-Modified: Mon, 05 Feb 2001 18:54:55 GMT

7.1.5 Server

The Server header provides information about the server used to psdbesrequest. In this case therver
MAY be either the DAP server or an underlying HTTP server & AP server uses that as part of its imple-
mentation. See RFC 2616[6] for this header’'s grammar. Tédglbr is OPTIONAL.

Example:

Server: Apache/1.3.12 (Unix) (Red Hat/Linux) PHP/3.0.15 mod_perl/1.21

7.1.6 WWW-Authentication

The WwW-Authenticate header MUST be included in an HTTP message that has a respodseof 401.
That is, when the DAP server is asked to provide access twanmasthat is restricted and the request does not
include authentication information (see “HTTP Authentica: Basic and Digest Access Authentication”[8]).
then it must return with a response code of 401 and includ@itlieAuthenticate header. See RFC 2616[6]
for this header’s grammar.

Example:

WWW-Authenticate: Basic realm="special directory, with CGIs"

7.1.7 XDODS-Server

The XDODS-Server header is used to return DAP server’'s implementation vergiftbormation to the client
programt! This header MUST be included in every response.

XDODS-Server = "XDODS-Server : dods/" version
version = DIGIT . DIGIT [. DIGIT]

Example: XDODS-Server: dods/3.2.2

7.2 Response Bodies

There are several responses that can come from a servequiubffthem are the core functionality of the
system. The DAS, the DDS, and the DataDDS can be thought adtasothjects containing representations of
the data source’s semantic metadaga attributes), its syntactic metadata (structure), anddta,despectively.
The Error response MUST ONLY be used to signal problems witgaest.

11The version information should be changed to reflect thewersf the DAP.

24

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard
7.2.1 DAS
URL Extension das
Headers Content-Description: dods-das
Content-Type: text/plain
Server:
Date:

Last-Modified:
XDODS-Server:

The DAS response is returned as the payload of a message MIST havedods-das as the value of
Content-Descriptionandtext/plain as the value o€ontent-Type. The body of the response contains
the persistent representation of the DAS object.

A DAS MUST have a container for each variable in the data samufite hierarchy of containers in a DAS
MUST follow the hierarchy of constructor types in the DDSMAY contain any number of extra containers.

das-doc = "Attributes" "{" *attribute-cont "}"
attribute-cont = attribute-cont | attribute

attribute = atomic-decl id 1#value *values ";"
values = "," value

value = <float> | <int> | id | quoted-string

7.2.1.1 Encoding Atomic types Atomic-type attributes are encoded as follows: Each aiteilhas a print
representation that consists of the type name followed byattribute name followed by the value or values.
The print representation of the value(s) is determined raiicg to:

1. Integers: Each integer value is printed using the baseSIOIWrepresentation of its value.

2. Floating point: Each floating point value is printed usihg base 10 ASCII representation of its value.
The ouput MUST conform to ANST's description obrintf using the,g format specification and the
precision is 6.

3. String and URL: Strings and URLs are printed in US-ASikhe value of a string contains a space,
it must be quoted using double quotés. (If the value contains a double quote, that MUST be escaped
using the backslash) character. The backslash character is represented aslésteibackslash ().

7.2.1.2 Encoding attribute structures Attribute Structures are encoded by printing the name oStingc-
ture, followed by a curly brace(J, followed by the print representation of all its child #itrtes followed by a
closing curly brace}).

An example DAS is shown in Figure 1.

25

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

attributes {
catalog_number {

}
casts {
experimenter {
string names "Flierl", "Hankin", "Sgouros", "Potter", "Gallagher";
}
time {
string units "hour since 0000-01-01 00:00:00";
string time_origin "1-JAN-0000 00:00:00";
}
location {
lat {
string long_name "Latitude";
string units "degrees_north";
}
lon {
string long_name "Longitude";
string units "degrees_east";
}
}
xbt {
depth {
string units "meters";
}
t {
float32 missing_value -9.99999979e+33;
float32 _Fillvalue -9.99999979e+33;
string history "From coads_climatology";
string units "Deg C";
}
}
}

}

Figure 1: Example Dataset Attribute Response. This exaogptesponds to the DDS shown in Figure 2. Some
of the variables in this fictional data soureed. catalog number) have no attributes. Even though they lack
attributes, they still have a matchiAdtribute StructureNote: The attributes shown in the exampleogpart

of DAP. In this particular example, most of the attributessrantics are defined by the COARDS convention.
The _Fillvalue attribute, however, is from NCL[7] (the leadingderscore instructs NCL to substitute this value
for any missing values). Neither COARDS nor NCL are part efttie DAP. The DARAttributecan be used to
hold any attribute information that can be stored using ttevic types, vectors of atomic types and structures
composed of those (vector and scalar) types.

26

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

dataset {
int catalog_number;
sequence {
string experimenter;
int32 time;
structure {
float64 latitude;
float64 longitude;
} location;
sequence {
float depth;
float temperature;
} xbt;
} casts;
} data;

Figure 2: Example Dataset Descriptor Response.

7.2.2 DDS
URL Extension dds
Headers Content-Description: dods-dds
Content-Type: text/plain
Server:
Date:

Last-Modified:
XDODS-Server:

The DDS response is returned as the payload of a message WMKIET havedods-dds as the value of
Content-Descriptionandtext/plain as the value o€ontent-Type. The body of the response contains
the persistent representation of the DDS object.

The DDS is a textual description of the variables and themmesand types that compose the entire data set.
The data set descriptor syntax is similar to the variabldadation/definition syntax o€ andC**. A variable

that is a member of one of the base type classes is declaredtingvwthe class name followed by the variable
name. The type constructor classes are declared d&rgace notation.

dds-doc = "data-source" "{" *type-decl "}" id ";"
type-decl = atomic-decl | array-decl
| structure-decl | sequence-decl | grid-decl

The dataset keyword has the same syntactic functionsagucture but is used for the specific job of en-
closing the entire data source even when it does not tedhnioeed an enclosing element (because at the
outermost level it is a single element such as a structurequrence).

An example DDS is shown in Figure 2.

Variables in the DAP have two forms. They are either atompesyor constructor types.

7.2.2.1 Atomic variables Atomic variables are similar to predefined variables in pohaal programming
languages like C or Fortrae g, int or integer*4).

27

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

byte an 8-bit byte; unsigned char in ANSI C.

intl6 a 16-bit signed integer.

uintlé a 16-bit unsigned integer.

int32 a 32-bit signed integer.

uint32 a 32-bit unsigned integer.

float32 the IEEE 32-bit floating point datatype (ANSI & oat).
float64 the IEEE 64-bit floating point datatype (ANSI Glsuble) .
string a sequence of bytes terminated by a null character.

URL represented as a string, but may be dereferenced in a CEestert4 (page 12) .

atomic-decl = atomic-type id ";"
atomic-type = "Byte" | "Intl16" | "Uint16" | "Int32" | "Uint32"
| "Float32" | "Float64" | "String" | "Url"
id = (ALPHA I ||_|| | n%n | non)
* (ALPHA | DIGIT | |I/|I | Il_ll | Il%ll | n . n)

7.2.2.2 Array An Array is a one dimensional indexed data structure as defined by ANBlultidimen-
sional arrays are defined as arrays of arrays. The size obemtis dimensions must be given. Each dimension
of an array may also be named.

array-decl = array-types id array-dims ";"

array-types = atomic-decl | structure-decl | sequence-decl | grid-decl
array-dims = array-dim | array-dim array-dims

array-dim = "[" [name "="] 1xDIGIT "]"

The number of dimensions MUST be greater than zero.

7.2.2.3 Structure A structure groups variables so that the collection can beipodated as a single item.
The variables can be of any type.

structure-type = structure "{" *structure-types "}" ";"
structure-types = atomic-type | array-type
| structure-type | sequence-type | grid-type

7.2.2.4 Sequence A sequence is an ordered setéfvariables which has several instantiations.values).
Variables in a sequence may be of different types. Eachrinstaf a sequence is one instantiation of the
variables. Thus a sequence can be represented as:

S00 ‘' Son

S0 " Sin

28

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

Every instance of sequenéehas the same number, order, and type of variables. Thus iguesee which
contains an array, each instance of the array MUST be the same A sequence implies that each of the
variables is related to each other in some logical way. A eeqge is different from a structure because its
constituent variables have several instances while atstels variables have only one instance.

sequence-decl sequence "{" *sequence-types "}" ";"
sequence-types = atomic-type | array-type
| structure-type | sequence-type | grid-type

7.2.2.5 Grid A gridis an association of aiV dimensional array witliv named vectors, each of which has
the same number of elements as the corresponding dimerfdio@ array. Each vector is used to map indices
of one of the array’s dimensions to a set of values which armathy non-integral €.g.floating point values).
The N (map) vectors may be different typesrids are similar to arrays, but add nhamed dimensions and maps
for each of those dimensions.

‘grid—decl = "Grid" "{" "Array:" array-decl "Maps:" 1l*array-decl "}" ";"‘

7.2.3 DataDDS

URL Extension dods

Headers Content-Description: dods-data
Content-Type: application/octet
Server:
Date:

Last-Modified:
XDODS-Server:

This response body returns data to the client. It consisasonipy of the DDS, followed by data in its external
representation, described in Section 7.3 (page 31) .

The DataDDS entity is returned as the payload of a messagsa@batent-Type header MUST bepplication/octet.
The body of the response contains both text, which holds a 8&38ribing the variables listed in the response

and the values for those variables encoded using XDR[12A.liféralData: is used to separate the text DDS

and the binary data.

|DataDDS = DDS CRLF "Data:" CRLF *0CTET|

Clients MAY supply a constraint expression (see Section page 12) with anpataDDS request. The DDS

in the DataDDS response describes the variables returned. The ordehihattiables are listed in the DDS
MUST match the order of the values in the binary section o@h&aDDS response. If the response contains
constructor types, then the variables are sent in the ondgntould be visited in a depth-first traversal of the
accompanying DDS.

The DDS is included in this response to provide a descripifcthe binary data so that a program will know
which values, their size and order, are included in a resptins

120ne possible design would instantiate a DDS object usimsgnfdrmation and then read values into objects repreggttimvariables.

29

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard
7.2.4 Error
URL Extension n/a
Headers Content-Description: dods-error
Content-Type: text/plain
Server:
Date:

Last-Modified:
XDODS-Server:

When a server encounters an error in the client's requestiSMreturn an Error response. When an error
is encountered in the server's own software it SHOULD retamnError. The body of the Error response
contains an error code along with text that provides a detson of the problem encountered. Server writers
are encouraged to provide text that describes the probléimembugh information to enable a user to correct
the problem or submit a meaningful bug report to the servedmtainer.

Error = "Error" "{" "code=" error-code ";"
"message=" error-msg nem onjw

error-code = 1*DIGIT

error-msg = quoted-string

7.2.5 \Version
URL Extension none
Headers Content-Type: text/plain
Server:
Date:

Last-Modified:
XDODS-Server:

Theversion response returns information about the DAP version, semsion and may return information
about a data source’s version. The response may be requestgdways: by using the stringersion as the
data-source-id or by appending the extensigrr to the data source name (see Section 6.1 on page 19).

abs-path = server-path data-source-id ["." ext ["?" query] 1]
ext = ".ver"

server-path = <name of DAP server>

data-source-id = "version"

If a DAP server receives aersion request, it MUST return DAP version information and SHOULdurn
server version information. If the request is made usingvife extension to alata-source-id then, in
addition to the information returned for thersion case, it MAY also return a data source version.

Version information should be returned as plain text in thglpad of the response. This version information
may be essentially the same as the information in the XDOB$€® header. The intent is to present users and
system maintainers with information about servers thataeansed to track down problems or determine if a
server can be upgraded to a newer version to fix a particubdolgm.

30

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard
version-response = dap-version CRLF server-version
[CRLF data-source-version]
dap-version = "Core version:" token "/" version-number
server-version = "Server version:" token "/" version-number
data-source-version = "Dataset version:" token "/" version-number
token = 1x<any CHAR except CTLs or separators>
version-number = 1+«DIGIT "." 1*DIGIT "." 1xDIGIT
7.2.6 Help
URL Extension n/a
Headers Content-Type: text/html
Server:
Date:

Last-Modified:
XDODS-Server:

Thehelp response MUST be returned when either the server receivéd anith no extensioni(e., a URL
which asks for no object) or when tdeta-source-id portion of the URL ishelp.

abs-path = server-path data-source-id ["." ext ["?" query] 1]
server-path = <name of DAP server>
data-source-id = "help"

The second way of requesting thelp response is analogous to requestingiéesion response.

Thehelp response MUST return an ASCII document which lists the esites recognized by the server. The
response MAY return other information as well.

7.3 Encoding Values

This section describes the external (persistent) reptatsen of values held by a DAP Data Source. This is the
way the variables are encoded for inclusion in the DataDR8 &ection 7.2.3 on page 29). This specification
should not be understood to dictate the storage of variablasDAP client or server, in memory or on the
disk. What a client does with this data is beyond the scophisfspecification, which is only concerned with
communicating the values from server to client.

From the point of view of the external representation, itdeful to divide the constructor types into aggregate
types and array types, making—with the atomic types—thaessictiypes of DAP variables.

7.3.1 Atomic types

The DAP uses Sun Microsystems’ XDR protocol[12] for the ex#édrepresentation of all of the atomic type
variables. Table 6 shows the XDR types used to represengiii@ug atomic type variables.

7.3.2 Constructor types

In order to transmit constructor type variables, the DAPraefihow the various base type variables, which
comprise the constructor type variable, are transmittedy éonstructor type variable may be subject to a

31

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

Table 6: The XDR data types used by the DAP as the externadseptations of simple-type variables

Type XDR Type
byte xdr byte
intl16 xdr short

uint16 xdr unsigned short
int32 xdr long

uint32 xdr unsigned long
float32 xdr float

float64 =xdr double

string xdr string

URL xdr string

constraint expression which changes the amount of datsrtiittied for the variable (see Section 4 on page 12).
For each of the four constructor types these definitions are:

7.3.2.1 Array An array is first sent by sending the number of elements in treyawicel® The array
lengths are 32-bit integers encodedkds_1ong would encode then't

Following the length information, each array element isosled] in succession. Arrays of bytes are handled
differently than other arrays:

1. An array of bytes: Bytes are encoded as the functiodte() encodes an array of bytes. The order of
bytes is retained regardless of the endian nature of thesohrrays of bytes, not individual bytes, are
padded to four byte boundries. Thus an array of 10 bytes idgzhtb 12 bytes.

2. One-dimensional arrays of all types other tibgne are encoded by encoding each element of the array
in the order they appear. Note that atomic types are encal¥BR would encode an array. Constructor
types are encoded by individually encoding each value azithes! in this sectiod®

3. Multi-dimensional arrays are encoded by encoding theefds using row-major ordering. Atomic types
are encoded as XDR would encode an array. Constructor typesnaoded by individually encoding
each value as described in this section.

Array = length length values

length = <32-bit integer, signed, big endian>

values = bytes | other-values

bytes = <8-bit bytes padded to a four-byte boundary>
other-values = numeric-values | strings | aggregates

13This is an artifact of the first implementation of the DAP andiX The DAP software needed length information to allocagenory
for the array so it sent the array length. However, XDR alswisethe array length for its own purposes. The demands ofwaadk
compatibility have left it in current implementations.

14Note that this means that array lengths are limitegb— 1 elements.

15This means that while just about every array type remainsénee size once encoded, an array of 16-bit integers doublsige
because XDR encodes 16-bit integers as 32-bit integer® tHat byte arrays are a special case, individual bytes@neadded; instead
the entire array is padded. For a more deatiled descripfidfD®’s operation, see RFC 1014[12].

32

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

7.3.2.2 Structure A structure is sent by encoding each field in the order thosdsfi@re declared in the
structure. For example, the structure:

Structure {
int32 x;
float64 y;
} a;
Would be sent by encoding the int32and then the float64.
Nested structures are sent by encoding their ‘leaf nodessaed in a depth first traversal. For example:

Structure {
int32 x;
Structure {
String name;
Byte image[512] [612];
} picture;
float64 y;
} a;

Would be sent by encoding thenname, image and finallyy.

7.3.2.3 Sequence A Sequence is transmitted by encoding each instance as farduwse and sending one
after the other, in the order of their occurrence in the data $he entire sequence is sent, subject to the
constraint expression. In other words, if no constraintreggion is supplied then the entire sequence is sent.
However, if a constraint expression is given, only the rdsdn the sequence that satisfy the expression are
sent

Because a sequence doedhave a length count, each instance is prefixed by=rt of instance marker.
Also, to accommodate nested sequences, then end of eachnseqgas a whole is marked byead of
sequence marker.

sequence = instances end-of-seq
instances = start-of-inst instance-values
end-of-seq = <byte value OxA5>
start-of-inst = <byte value O0xbA>

Since XDR is used to encode the binary data responsetthe of instanceandend of sequence bytes
must thus be encoded using XDR. This means that these bytesiatr with three additional bytes of padding
asxdr_byte would encode them.

An empty Sequencé® is encoded by sending only theid-of-seq marker, encoded asdr_byte would
encode it.

7.3.2.4 Grid A Gridis encoded as if it were &tructure(one component after the other, in the order of their
declaration).

16A returnedSequencenight contain no values because it is accessed using a amsthich no element in thBequenceatisfies.

33

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

8 Examples

Following are some examples of requests sent to a servezs@ming some data source and the response
documents returned by those requests.

8.1 Simple request

Assume that a server calledrver . edu has some temperature data, stored as a ten-element array Tapn
in a single file calledtemp.dat in a directory callediata in thehtdocs tree. A DAP URL requesting the
DDS might look like this:

http://server.edu/cgi-bin/nph-dods/data/temp.dat.dds

In all of the following examples, carriage returns and naves are shown asCRLF>. Only shown are the
<CRLF> characters that are REQUIRED. Since some or all of each nsgge encoded as text, it makes sense
to include extra line breaks to enhance their readabilgya've done here).

The document containing the DDS response would look like thi

Content-Description: dods-dds<CRLF>
Content-Type: text/plain<CRLF>
Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21<CRLF>
Date: Fri, 09 Feb 2001 18:54:55 GMT<CRLF>
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1<CRLF>
<CRLF>
Dataset {
Float32 Tmp[10];
} temp.dat;

Note that each of the response headers MUST end in a canéagerline-feed pair. Also note that a carriage-
return line-feed pair on an otherwise blank line MUST sefgattae response headers from the message body][9,
10].

The DAS would be requested like this:
http://server.edu/cgi-bin/nph-dods/data/temp.dat.das
And its response might look like this:

Content-Description: dods-das<CRLF>
Content-Type: text/plain<CRLF>
Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21<CRLF>
Date: Fri, 09 Feb 2001 18:54:55 GMT<CRLF>
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1<CRLF>
<CRLF>
Attributes {
Tmp {
Float32 Lat 42.2;
Float32 Lon -89.3
}
}

34

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

The data would be requested like this:
http://server.edu/cgi-bin/nph-dods/data/temp.dat.dods
The DataDDS containing the data would look like this:

Content-Description: dods-data<CRLF>
Content-Type: application/octet-stream<CRLF>
Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21<CRLF>
Date: Fri, 09 Feb 2001 18:54:55 GMT<CRLF>
Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1<CRLF>
<CRLF>
Dataset {
Float32 Tmp[10];
} temp.dat;<CRLF>
Data:<CRLF>
<Tmp length><Tmp length><value of Tmp[0]> ... <value of Tmp[9]>

Where<Tmp length> (which appears twice) is the number (32-bit big-endian teosipliment signed inte-
ger) of elements in the array. In this case it would be t8n 0 00 0A;5) and<value of Tmp[0]>, etc,
are the values (32-bit big endian IEEE 754 floating point).

Note that theContent-Type header’s value iapplication/octet-stream for this type of response and
that the character sequenceRLF>Data: <CRLF> serves as a separator for the response DDS and the binary
data values.

The binary data which follows theCRLF>Data: <CRLF> separator MUST NOT contain any carriage-return
line-feed pairs.

8.2 Grid

Suppose you know that there’s a 30 by®fid held in some data sourcesdrver.edu, and you want a 2 by
3 chunk of it. You can request a part o&aid with a constraint expression like thig{20:21] [40:42].

NOTE: In the remaining examples, we will omit the explicit indicet of carriage-return line-feed pairs
to simplify presentation.

Ask for the DDS of this data like this:
http://server.edu/cgi-bin/nph-dods/grid-data/temp2.dat.dds?g[20:21] [40:42]

The document containing the DDS would look like this:

35

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

Content-Description: dods-dds

Content-Type: text/plain

Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT

Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT

XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Dataset {
Grid {
Array:
Float32 al[xdimen = 2] [ydimen = 3]
Maps:
Float32 xdimen[xdimen = 2];
Float32 ydimen[ydimen = 3];
} g;
} temp2.dat;

The DAS would be requested like this:
http://server.edu/grid-data/temp2.dat.das?grid [20:21] [40:42]

And its response mightlook like this:

Content-Description: dods-das

Content-Type: text/plain

Server: Server: Apache/1.3.12 (Unix) (Red Hat/Linux) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT

Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT

XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Attributes {
g {
String Date "3 Nov 2003, 1433Z";
String Instrument "Black & Decker Spectrum Analyzer";
}
}

The data would be requested like this:

http://server.edu/cgi-bin/nph-dods/grid-data/temp2.dat.dods?g[20:21] [40:42]
The DataDDS containing the data would look like this:

17we say ‘might’ because there’s no required set of attributes

36

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard
Updates/Obsoletes: None

2005/04/27
DAP 2.0 Standard

Content-Description: dods-data

Content-Type: text/plain

Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT

Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT

XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Dataset {
Grid {
Array:
Float32 al[xdimen = 2] [ydimen = 3]
Maps:
Float32 xdimen[xdimen = 2];
Float32 ydimen[ydimen = 3];
} g;
} temp2.dat;
Data:
<g.a length><g.a length>
<g.al0] [0]><g.al[0] [1]><g.a[0] [2]>
<g.al1][0]><g.al1] [1]><g.al1][2]>
<g.xdimen length><g.xdimen length><g.xdimen[0]><g.xdimen[1]>
<g.ydimen length><g.ydimen length><g.ydimen[0]><g.ydimen[1]>
<g.ydimen[2]>

The data held in &rid type is encoded as for @tructure one field at a time. In this example, first tgea

field is encoded, then the. xdimen andg . ydimen

8.3 Seguence

Suppose a Sequence of data cabed is also stored aterver.edu. Each record of the sequence contains
three valueskval, yval, andzval. A constraint which asks for all values of tSequencerherexval is less

than fifteen would look like:
xval<15

Ask for the DDS of these data like this:

http://server.edu/cgi-bin/nph-dods/seq-data/temp3.dat.dds?xval<15

The document containing the DDS would look like this:

37

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

Content-Description: dods-dds

Content-Type: text/plain

Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT

Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT

XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Dataset {
Sequence {
Int16 xval;
Int16 yval;
Intl16 zval;
} seq;
} temp3.dat;

The DAS would be requested like this:
http://server.edu/cgi-bin/nph-dods/seq-data/temp3.dat.das?xval<lb

And its response might look like this:

Content-Description: dods-das

Content-Type: text/plain

Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT

Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT

XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Attributes {
xval {
String units "meters per second";
3
yval {
String units "kilograms per minute";
b
zval {
String units "tons per hour";
3
}

The data would be requested like this:

http://server.edu/cgi-bin/nph-dods/seq-data/temp3.dat.dods?xval<15
The DataDDS containing the data would look like this:

38

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard
Updates/Obsoletes: None

2005/04/27
DAP 2.0 Standard

Content-Description: dods-data

Content-Type: text/plain

Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT

Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT

XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Dataset {
Sequence {
Int16 xval;
Int16 yval;
Intl16 zval;
} seq;
} temp3.dat
Data:
<0xbA><first xval><first yval><first zval>
<0xb5A><next xval><next yval><next zval>
<0x5A><next xval><next yval><next zval>
<0xbA><last xval><last yval><last zval><0xA5>

A Sequencs values are transmitted one instance at a time. Each iwstarprefixed by thstart of instance
marker which isA;¢. In this example, the constraintal<15 causes four instances to be sent and each one is
prefixed by the start of instance marker. Once all of the seteiostances of thBequenceave been sent, the

end of sequenamarker @54¢) is written.

Here’s a second example of a DataDDS request/responseopaimfiore complex data source, one that has a

Sequencwithin a SequenceThe DDS for this data source looks like:

Dataset {

Sequence {
Float32 lat;
Float32 lon;
Sequence {

Int16 depth;
Float64 temp;
} sounding;
} track;
} temp4.dat;

Suppose you wanted to get all the soundings in a lat/lon kebstians the area of 80 to 90 degrees north latitude
and 50 to 60 degress west longitude (you would know the uhdata source by looking at the attributes which

have been omitted from this example). Here's the consteaiptession:

|track.lat>80.0&track.1at<90.0&track.lon<—50.0&track.lon>—60.0|

If you requested the DataDDS using the constraint, the respwould be:

39

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard
Updates/Obsoletes: None

2005/04/27
DAP 2.0 Standard

Content-Description: dods-data

Content-Type: text/plain

Server: Server: Apache/1.3.12 (Unix) PHP/3.0.15 mod_perl/1.21
Date: Fri, 09 Feb 2001 18:54:55 GMT

Last-Modified: Mon, 05 Feb 2001 16:50:02 GMT<CRLF>
XDODS-Server: Friendly-neighborhood DAP implementation v/3.1.1

Dataset {

Sequence {
Float32 lat;
Float32 lon;
Sequence {

Int16 depth;
Float64 temp;

} track;
} temp4.dat;
Data:

} sounding;

<0xbA><track.
<0xbA><track.
<0xbA><track.
<0xbA><track.
<0xbA><track.
<0xbA><track.
<0xbA><track.
<0xbA><track.
<0xbA><track.
<0xbA><track.
<0xbA><track.
<0xbA><track.
<0xbA><track.
<0xbA><track.
<0xbA><track.

lat><track.lon>
sounding.depth><track.sounding. temp>
sounding.depth><track.sounding. temp>
sounding.depth><track.sounding. temp>
sounding.depth><track.sounding.temp><0xA5>
lat><track.lon>
sounding.depth><track.sounding. temp>
sounding.depth><track.sounding. temp>
sounding.depth><track.sounding.temp><0xA5>
lat><track.lon>
sounding.depth><track.sounding.temp>
sounding.depth><track.sounding. temp>
sounding.depth><track.sounding. temp>
sounding.depth><track.sounding. temp>
sounding.depth><track.sounding. temp><0xA5><0xA5>

In this example,

the constraint has selected three instavfdbe outeSequencerack. For each instance of

track, there is a complete inn@equenceounding which, for this constraint, is sent in its entiréfyNote
that the end of sequence marker followitgrack . sounding . temp> is the marker for the end of the inner
Sequencecalledsounding. The finalA5,¢ is the end of sequence marker for the o8eguencetrack.

References

[Normative References]

[1] American National Standards Institute, 1430 Broadwésw York, NY 10018, USA.Coded Character
Set—7-bit American Standard Code for Information Intergie Standard ANSI X3.4-198886.

[2] American National Standards Institute, 1430 Broadwésw York, NY 10018, USA American
National Standard Programming Language C, ANSI X3.1591B&cember 14 1989.

18you could write a different constraint expression that wiochoose only values at a certain depthcetera

40

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

[3] T. Berners-Lee, R. Fielding, and L. Masinter. Unifornsoarce identifiers (URI): Generic syntax. RFC
2396.

[4] S. Bradner. Key words for use in rfcs to indicate requiesrrievels. RFC 2119.
[5] David H. Crocker. Standard for the format of arpa intéreet messages. RFC 822.

[6] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. MasntP. Leach, and T. Berners-Lee. Hypertext
transfer protocol —HTTP/1.1. RFC 2616.

[7] National Center for Atmospheric Research. NCAR Commiaagiguage.
http://www.ncl.ucar.edu/Document/Language/. Retrigvyé\pril 2005 from the World Wide Web.

[8] J. Franks, P. Hallam-Baker, J. Hostetler, S. LawereRckeach, A. Loutonen, and L.Stewart. Http
authentication: Basic and digest access authenticatib@. F17.

[9] N. Freed and N. Borenstein. Multipurpose internet mgitasions (MIME) part one: Format of internet
message bodies. RFC 2045.

[10] N. Freed and N. Borenstein. Multipurpose internet reatensions (MIME) part two: Media types. RFC
2046.

[11] IEEE Computer Society, 345 E. 47th St, New York, NY 100UBA. IEEE Standard for Binary
Floating-Point Arithmetic, IEEE Std 754-198B985.

[12] Sun Microsystems, Mountain View, CaliforniXDR. Version 4.
[Informative References]

[13] Ken Arnold and James Goslinghe Java Programming Languagaddision Wesley, Reading,
Massachusetts, 1996.

[14] Peter Cornillon, James Gallagher, and Tom Sgourosn@g& Accessing data in a distributed,
heterogeneous environme@ODATA Data Science Journa:164-174, 2003. Online 5 November,
2003: http://journals.eecs.qub.ac.uk/codata/Jownaiénts/203/2.03pdfs/DS247.pdf.

[15] C.J. Date An Introduction to Database Systendgddison Wesley, Reading, Massachusetts, 2000.

[16] James Gallagher and George Milkowski. Data transpdhimvthe distributed oceanographic data
system. InWorld Wide Web Journal: Fourth International World Wide Watinference Proceedings
pages 691-702, 1995.

[17] NCSA. HDF 4.1r3 user’s guide. http://hdf.ncsa.uidud)G41r3html/, 1999. Retrieved from the
World Wide Web 13 October 2003.

[18] NCSA. HDFS5 - a new generation of HDF. http://hdf.ncsacuedu/HDF5/, 2001. Retrieved from the
World Wide Web 15 December 2002.

[19] Russ Rew, Glenn Davis, and Steve Emmers¢etCDF User’s GuideUnidata Program Center,
Boulder, Colorado, April 1993. Version 2.3.

[20] Guy L. Steele JrCommon Lisp: The LanguagPigital Press, Bedford, Massachusetts, 1984.
[21] W. Richard StevendJNIX Network ProgrammingPrentice-Hall, Inc., 2d edition, 1999.

41

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard
Authors

James Gallagher

OPeNDAP, Inc.

165 Dean Knauss Dr.

Narragansett, RI. 02882

Phone: 401.284.1304, email: jgallagher@opendap.org

Nathan Potter

Oregon State University

Corvallis, OR 97331-4501

Phone: 541.737.2293, email: ndp@coas.oregonstate.edu

Tom Sgouros

Manual Writing NA.

15 BostonNeck Road

Wickford RI 02852

Phone: 401.861.2831, email: tomfool@as220.0rg

Steve Hankin

NOAA PMEL

7600 Sand Point Way NE

Seattle, WA 98115

Phone: 206.526.6080, email: Steven.C.Hankin@noaa.gov

Glenn Flierl

MIT

77 Massachusetts Avenue

Cambridge, MA 02139-4307

Phone: 617.253.4692, email: glenn@lake.mit.edu

Appendix A Notational Conventions and Generic Grammar

A.1 Augmented BNF

All of the mechanisms specified in this document are desgiitbéoth prose and an augmented Backus-Naur
Form (BNF) similar to that used by RFC 822 [5]. Implementoittmeed to be familiar with the notation in
order to understand this specification. The augmented BblBdes the following constructs:

name = definition The name of arule is simply the name itself (without any esidlg" <" and">")
and is separated from its definition by the equl character. White space is only significant in that
indentation of continuation lines is used to indicate a ddénition that spans more than one line.
Certain basic rules are in uppercase, such as SP, LWS, HTFARGIT, ALPHA, etc. Angle brackets
are used within definitions whenever their presence willifate discerning the use of rule names.

"literal" Quotation marks surround literal text. Unless stated otlser, the text is case-insensitive.

42

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

rulel | rule2 Elements separated by a bai (') are alternatives, e.g'yes | no" will acceptyes or no.

(rulel rule2) Elements enclosed in parentheses are treated as a singlentlélhus!" (elem (foo |
bar) elem)" allows the token sequencéslem foo elem" and"elem bar elem".

xrule The charactet " preceding an element indicates repetition. The full formds>*<m>element"
indicating at leaskn> and at moskm> occurrences of element. Default values are 0 and infinity so
that"* (element) " allows any number, including zerdi*element" requires at least one; and
"1*2element" allows one or two.

[rule] Square brackets enclose optional elemenfspo bar]" is equivalentto'*1(foo bar)".

N rule Specific repetition! <n>(element) " is equivalent td'<n>*<n>(element)";that is, exactly
<n> occurrences of (element). Thus 2DIGIT is a 2-digit numbed, BALPHA is a string of three
alphabetic characters.

#rule A construct"#" is defined, similar to'x", for defining lists of elements. The full form is
"<n>#<m>element" indicating at leaskn> and at moskm> elements, each separated by one or
more commas'(, ") and OPTIONAL linear white space (LWS). This makes the uforah of lists very

easy; arule such as *LWS element *(*LWS "," *LWS element)) can be shown as
1#element Wherever this construct is used, null elements are alloteidlo not contribute to the
count of elements present. Thatielement), , (element) " is permitted, but counts as only two

elements. Therefore, where at least one element is reqairézhst one non-null element MUST be
present. Default values are 0 and infinity so thiéélement" allows any number, including zero;
"1#element" requires at least one; afid#2element" allows one or two.

; comment A semi-colon, set off some distance to the right of rule tetdrts a comment that continues to
the end of line. This is a simple way of including useful ndteparallel with the specifications.

implied *LWS The grammar described by this specification is word-basedefit where noted otherwise,
linear white space (LWS) can be included between any twacadfavords (token or quoted-string), and
between adjacent words and separators, without changingtiérpretation of a field. At least one
delimiter (LWS and/or separators) MUST exist between anyttvkens (for the definition of "token”
below), since they would otherwise be interpreted as asitaiden.

A.2 Basic Rules

The following rules are used throughout this specificatmdéscribe basic parsing constructs. The US-ASCII
coded character set is defined by ANSI X3.4-1986 [1].

43

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl

Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

OCTET = <any 8-bit sequence of data>

CHAR = <any US-ASCII character (octets 0 - 127)>

UPALPHA = <any US-ASCII uppercase letter "A".."Z">

LOALPHA = <any US-ASCII lowercase letter "a"..'"z">

ALPHA = UPALPHA | LOALPHA

DIGIT = <any US-ASCII digit "O0".."9">

CTL = <any US-ASCII control character

(octets 0 - 31) and DEL (127)>

CR = <US-ASCII CR, carriage return (13)>

LF = <US-ASCII LF, linefeed (10)>

SP = <US-ASCII SP, space (32)>

HT = <US-ASCII HT, horizontal-tab (9)>

<> = <US-ASCII double-quote mark (34)>

HTTP/1.1 defines the sequence CR LF as the end-of-line méorkeall protocol elements except the
entity-body (see Appendix 19.3 of RFC 2616[9] for toleraopkcations). The end-of-line marker within an
entity-body is defined by its associated media type, as dhestin Section 3.7 of RFC 2616[9].

CRLF = CR LF

HTTP/1.1 header field values can be folded onto multipleslifighe continuation line begins with a space or
horizontal tab. All linear white space, including foldirftgs the same semantics as SP. A recipient MAY
replace any linear white space with a single SP before irgéng the field value or forwarding the message
downstream.

LWS = [CRLF] 1*(SP | HT)

The TEXT rule is only used for descriptive field contents aalligs that are not intended to be interpreted by
the message parser. Words of *TEXT MAY contain charactenmfcharacter sets other than ISO- 8859-1
[22] only when encoded according to the rules of RFC 2047.[14]

TEXT = <any OCTET except CTLs,
but including LWS>

A CRLF is allowed in the definition of TEXT only as part of a heafield continuation. It is expected that the
folding LWS will be replaced with a single SP before intetpt®n of the TEXT value.
Hexadecimal numeric characters are used in several piaitsoents.

HEX = AN | ngn | ngn | npn | ngn | ngn

| Ilall | Ilbll | "C" | |Id|l | Ilell | Ilfll | DIGIT

Many HTTP/1.1 header field values consist of words sepailate®VsS or special characters. These special
characters MUST be in a quoted string to be used within a patermaalue (as defined in section 3.6).

token = 1x<any CHAR except CTLs or separators>
separators - n (n I n) n I ngn | nsn | ng"

| Il’ll I Il;ll I II:II | II\II | <Il>

| n/n I n [n I II] n | neon | n=n

| ll{ll | ll}ll | SP | HT

Comments can be included in some HTTP header fields by sutimgithe comment text with parentheses.
Comments are only allowed in fields containing "comment” axt pf their field value definition. In all other
fields, parentheses are considered part of the field value.

comment = "(" *(ctext | quoted-pair | comment) ")"
ctext <any TEXT excluding "(" and ")">

44

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
2005/04/27

Category: Draft Community Standard

Updates/Obsoletes: None DAP 2.0 Standard

A string of text is parsed as a single word if it is quoted ugiogble-quote marks.

quoted-string
qdtext

(<"> *x(qdtext | quoted-pair) <">)
<any TEXT except <">>

The backslash characte\() MAY be used as a single-character quoting mechanism oiitlyinv

guoted-string and comment constructs.

quoted-pair = "\" CHAR

This appendix was copied from RFC 2616 [6]. The copyrightfithat document reads:

Copyright (C) The Internet Society (1999). All Rights Ressst.

This document and translations of it may be copied and fheugo others, and
derivative works that comment on or otherwise explain itsgist in its
implementation may be prepared, copied, published andtligtd, in whole or in

part, without restriction of any kind, provided that the eb@opyright notice and this

paragraph are included on all such copies and derivativksvétowever, this
document itself may not be modified in any way, such as by rémgahe copyright

notice or references to the Internet Society or other letieorganizations, except as
needed for the purpose of developing Internet standardichixcase the procedures

for copyrights defined in the Internet Standards process baufollowed, or as
required to translate it into languages other than English.

Appendix B Acronyms and Abbreviations

The following acronyms are used in this text.

BNF Backus-Naur Form

CE Constraint Expression

CGl Common Gateway Interface

DAP Data Access Protocol

DAS Dataset Attribute Structure

DDS Dataset Descriptor Structure

DODS Distributed Oceanographic Data System
DataDDS Data Dataset Descriptor Structure
HTML Hypertext Markup Language

HTTP HyperText Transfer Protocol

MIME Multimedia Internet Mail Extension

SOAP Simple Object Access Protocol

45

ESE-RFC-004.0.06 Gallagher, Potter, Sgouros, Hankin, Flierl
Category: Draft Community Standard 2005/04/27
Updates/Obsoletes: None DAP 2.0 Standard

SRS Software Requirements Specification, See IEEE 830-1998
URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C The World Wide Web Consortium, See http://www.w3c.org/
XDR External Data Representation

XML Extensible Markup Language

Appendix C Errata

There are no errata for this document.

46

